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Synopsis

This manuscript is intended to be a companion volume to the "METCAN User's

Manual" and the "METCAN Demonstration Manual". The primary purpose of the manual

is to give details pertaining to micromechanics and maeromechanics equations of high

temperature metal matrix composites that are programmed in the METCAN computer code.

The subroutines which contain the programmed equations are also mentioned in order to

facilitate any future changes or modifications that the user may intend to incorporate in the

code. Assumptions and derivations leading to the micromechanics equations are briefly

mentioned.

Introduction

High temperature metal matrix composites offer great potential for use in advanced

aerospace structural applications. The realization of this goal however, requires concurrent

developments in (1) a technology base for fabricating high temperature metal matrix

composite structural components, (2) experimental techniques for measuring thermal and

mechanical characteristics, and (3) computational methods to predict their behavior. In fact,

it might be argued that the development of computational methodologies should precede

the others because the structural integrity and durability of high temperature metal matrix

composites (HT-MMC) can be computationally simulated, and the potential payoff for a

specific application can be assessed, at least qualitatively. In this way, it is possible to

minimize the costly and time consuming experimental effort that would otherwise be

required in the absence of a predictive capability.

Recent research into computational methods for simulating the nonlinear behavior

of high temperature metal matrix composites at NASA Lewis Research Center has led to

the development of the METCAN (Metal Matrix Composite ANalyzer ) computer code

(References 1-3). It is a computer code to simulate the high temperature nonlinear behavior



of continuous fiber reinforced metal matrix composites. METCAN treats material

nonlinearity at the constituent (fiber, matrix, and interphase) level, where the behavior of

each constituent is modeled using a time-temperature-stress dependence. The composite

properties are synthesized from the constituent instantaneous properties by making use of

composite micromechanics and composite macromechanics models. Factors which affect the

behavior of the composite properties include the fabrication process variables, the in-situ

fiber and matrix properties, the bonding between the fiber and matrix, and/or the properties

of the interphase between the fiber and matrix. The METCAN simulation is performed as

point-wise analysis and produces composite properties which can be incorporated into a

finite element code to perform a global structural analysis. After the global structural

analysis is performed, METCAN decomposes the composite properties back into the

localized response at the various levels of the simulation. At this point the constituent

properties are updated and the next iteration in the analysis is initiated. This cyclic

procedure is referred to as the integrated approach to metal matrix composite analysis and

is depicted in Figure 1.

METCAN can be used as a stand alone code to simulate the nonlinear behavior of

MMC or can be used as a module in any structural analyses package to predict the metal

matrix composite structural response. It can incorporate the fabrication induced residual

stresses in its simulation of composite response. A variety of physical effects such as

temperature dependence, stress and stress rate dependence, fatigue due to mechanical and

thermal cyclic loads can be accounted for in METCAN analysis. Furthermore, the code can

be updated with relative ease to include any other physical influences that one might want

to consider in a specific analysis. The documentation for the code consists of three volumes:

1) METCAN User's Manual, 2) METCAN Demonstration Manual and 3) METCAN

Theoretical manual. The details of how to use the code are discussed in the f'u'st volume.

The various features of METCAN and the types of analysis that METCAN can peroform

are illustrated through several demonstration problems in the second volume. The

theoretical manual lists all the equations pertaining to the high temperature metal matrix

composites with the idea of enabling the user to update or modify the source code if

necessary.

Scope

The scope of the present manual is to summarize the mieromechanics equations that

are programmed in the METCAN computer code. The micromechanics equations provide

a basis for expressing the equivalent ply level properties of the metal matrix composite in

terms of its constituent in-situ properties. Three constituents are recognized in the present

code. They are the fiber, matrix and the interphase. It should be noted that the interphase

can also be replaced by a compliant layer. The only difference is by virtue of the definition

the interphase is a region formed between the fiber and matrix as result of a chemical



reaction reducing the diameter of the fiber. A compliant layer, however, is a coating on the
fiber provided intentionally to prevent suchchemical reaction. Consequently,the effective
fiber diameter is increased in the case of compliant layer. The mechanics involved in
integrating the ply levelproperties to the laminate levelproperties (macromechanics)is well
known and any text book on compositessuchas Reference [4] can be consulted. These
details are not repeated here.

Coordinate Axes

METCAN adopts two sets of cartesian coordinate axes for presenting the results. They are

the material axes and the structural axes as shown in Figure 2. The material axes are defined

with respect to fiber orientation. The direction along the fiber is denoted as 1-1 or 11 and

the directions transverse to the fiber are denoted 2-2 (22) and 3-3 (33) respectively. All the

ply level properties and responses are expressed with respect to the material axes system.

The global/laminate level properties and responses are given in the structural axes system.

They are denoted by x, y, and z. Any quantity with a normal orientation is represented by

the subscripts xx, yy, and zz. The shear orientations are indicated by subscripts xy, yz, and

zx.. Also, the coordinate axes definitions are printed as a part of the output for easier

interpretation.

Units

The primary units chosen in METCAN are the British system of units. All of the constituent

properties in the resident data bank are expressed accordingly: inches (for length), pounds

(for forces), degrees Fahrenheit (for temperatures), BTU's for heat, seconds/hours (for time)

and psi/ksi/Mpsi (for stress and stiffness related quantities). A table of units (Table 1) is

provided (by default as one of the output options) at the beginning of the METCAN output

for easy reference. Any user wishing to employ another system of units may do so by

updating the data bank properties into the preferred system. The output will then reflect

the appropriate unit system chosen by the user. Nevertheless, the user should exercise

some caution as there may have been some hard wired conversions of units within the

source code (e. g. conversions of psi to ksi, or mpsi are done by dividing with 1000 or

1000000 with in the code in order to print some of the variables in the most appropriate and

concise format)



Glossary of symbols

11, 22, 33

g m, d, and 1

A, B, C

C

E

D

Do

G

K

T

0

k

p

a

P
AT

subscripts for longitudinal and transverse

directions in the material coordinate

system

subscripts for fiber, matrix, interphase

and ply

unit cell subregions

heat capacity

Young's modulus

Current diameter of the fiber

Outer diameter of the fiber

Shear modulus

thermal conductivity

temperature

suffix for the reference (room temp. )

quantities

fiber volume ratio

thermal expansion coefficient

Poisson's ratio

stress

density

temperature differential

Nonlinear Material Behavior Modds

METCAN treats material nonlinearity at the constituent level through the incorporation of

a multifactor interaction relationship (MFIR). The MFIR models the material behavior in

the form of a time-temperature-stress dependence of the constituent properties. The MFIR

and the rationale for its utilization are expressed in Figure 3. The form of the MFIR is a

prodi_ct function of terms raised to specified powers that define the values of the material

property (P) of the fiber, matrix, and interphase. The constituent properties (P) which are

determined through the MFIR are modulus, Poisson's ratio, strength, coefficient of thermal

expansion, thermal conductivities. The density and heat capacity are considered as constants.

For each fiber, matrix and interphase property, there is generally a distinct set of values of

the exponents necessary to express the functional definition of the property. The various

exponents are determined from the appropriate experimental data. The variation of a

typical property as a function of one such factor is shown in Figure 4 for various exponent

values. As seen from the figure, one can nullify any of the physical effects (e. g. temperature
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dependence)by simply choosinga "zero" exponent. A linear variation canbe achieved by
taking a value of "one" for the exponent. The property value must be matched carefully at
the reference point and at the final point from the appropriate experimental data. The
actual nonlinear behavior between these two points is dependent on the value of the
exponentwhich is usuallyof a secondorder effect.

The coding for the material behavior modeling is done through a set of six subroutines in
the METCAN code. The thermal properties are updated in the subroutines THERF,

THERM, and THERD respectively for fiber, matrix and interphase properties. The

mechanical properties are updated in the subroutines MECF, MECM, and MECD

respectively for fiber, matrix and interphase properties.

METCAN unit cell

In METCAN the global behavior is obtained by successive integration of the

response/properties from the constituent level to laminate level using micromechanics and

macromechanics. The micromechanics embedded in METCAN is based upon the usual

assumptions pertaining to the mechanics of materials approach [Ref. 4-5]. The derivation

of equivalent composite properties using micromechanics theory starts with the identification

of a representative volume element or unit cell. It is the smallest region or piece of material

over which the stresses and strains are macroscopically uniform. However, within the unit

cell the stresses and strains are nonuniform due to the heterogeneity of the material. It is

assumed that these cells are arranged in a regular square array pattern. The principal

assumptions involved in the mechanics of materials approach are (1) fiber and matrix are

subjected to the same strain in the fiber direction of a unidirectional fibrous composite and

(2) the same transverse stress is applied to both the fiber and matrix in the direction

transverse to the fiber. The details of the representative volume element chosen in the

development METCAN is shown in Figure 5. The unit cell for METCAN consists of a

maximum of three regions, A, B, and C. The region A consists of matrix only, the region

B consists of a combination of matrix and interphase, and the region C consists of a

combination of all three constituents: fiber, matrix and interphase. Note, that in the

following discussion the interphase is treated as a separate constituent with distinct

properties. Thus, it can either represent a zone formed due to a chemical reaction between

the fiber and matrix or a separate layer provided intentionally to prevent such a reaction.

In the figure 5 D represents the current diameter of the fiber and D O represents the outer

diameter. The outer diameter is either the undamaged fiber diameter if there is an

interphase or the diameter of the fiber with the compliant layer coating if there is a

compliant layer. The different regions A, B, and C of unit cell facilitate the representation

of nonuniformity in the local stress distribution.



Microstresses in Regions A, B, and C of METCAN unit cell

The properties of the constituents forming the unit cell in the regions A, B, and C are

updated incrementally at the end of each iteration depending upon the local response

(stress, stress rate, temperature etc..). The local response is obtained by progressively

decomposing the global response to ply response (ply stresses) and applying the

micromechanics at the unit cell. The stresses in the various regions of unit cell are termed

as "microstresses" in METCAN. These calculations are performed in the METCAN

microstress calculation module which consists of a set of four subroutines STRESF,

STRESM, STRESD and STRESI. The first three pertain to the calculation of microstresses

in the various regions for fiber, matrix and interphase respectively. Operations common to

these three are grouped together into a common subroutine STRESI which is called before

calling the rest of the three subroutines. The following few paragraphs lists the various

equations that are currently programmed in METCAN to perform the microstress

calculations.

Stresses due to temperature differences

The following equations show how microstresses due to temperature differences in the fiber,

microstresses in matrix in regions A, B and C, and microstresses in interphase in regions B

and C are calculated in METCAN. It should be noted that temperature differences cause

microstressess due to two reasons. The first one is due to differences in constituents thermal

expansion coefficients. The second one is due to the ply stresses that are developed as a

result of different ply orientations. The latter is described in the next section "stresses due

to mechanical loads".

Microstresses along the longitudinal (11) direction:

Fiber Microstresses: The fiber longitudinal microstress due to a uniform temperature

difference AT can be given by

On I = l_m-am] EmAT (1)

In the above equation the longitudinal stress in fiber due to a temperature difference is

calculated using the differential expansion between the fiber and ply. However, in

METCAN it is calculated from the stress equilibrium along the fiber direction using the

following equation.

°m=-{ (__)2_ 1}od,, +(__)2o_a,_(_._}] (2,

The above equation forces fiber stress to be in equilibrium with those of matrix and

interphase.

Matrix Microstresses: The matrix microstress has two components amllT and am11_tj where

the part of the subscript T and NU denote the normal and Poisson's contributions
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respectively. They are given by

°ram" = {utn-Umn}Emn AT

OmllN O = [ I/6 x S{v.a,^(_m-_._o)+v_m(_m-_) +
C + A

B + B ]EmnAT

(3)

(4)

OralI = Omll T + OmllNl.I (5)

Interphase Microstresses: The interphase microstress, similarly, has two components OdllT

and ad11NU which are given by
B

OdlINU B C= ll4{v_m(am- c_z)+V_ic(am- _.z)+
B C

Vd3m(ccm-ad33)+v_1^(ar_--a_3)} _d,,AT

(7)

Microstresses along the transverse (22 and 33) directions:

Transverse fiber microstresses:

°me = °*me (9)
0t33(2 = 0m33C

Note that in the above it is assumed that both the fiber and matrix develop the same
microstress in 22 and 33 directions.

Transverse (22 &33) thermal microstresses in matrix Region A: The tranverse thermal

microstresses due to a temperature differential AT is computed by considering the

differential expansion of the region A and the ply. The end result is

(lO)

O...a3X= {atS3-_3A +V...l_.(a,t-a...,)+V_A(_m- am_.zJ)}ATE_3A (11)

Transverse (22 & 33) thermal microstresses in matrix Region B: These microstresses are

derived along the same lines as the above. However, since the region B consists of both



matrix and interphase, there are contributions from both constituents. Furthermore, both

interphase and matrix will have the same stress given by the following equations:

Om22B

.4-

4-

_ _ vdl:mlatn-CXdn} - v,,,izBlatn-a,,,u}

(I

(g!22

(ZI33

Om33B

(12)

(13)

Transverse (22 & 33) thermal microstress in matrix region C: These are calculated by

forcing the equilibrium in the respective directions. The following are the appropriate

equations:

O11122C ---- _

0'm33C = -

(I_) DDom_.A - _'i_I)_D c[ D0J D!om22e (14)

(I-_/_) Do _ {i_ D}D(V/_ V Om33A D00 "D)'O_3B (15)

Transverse microstressess in the interphase regions B and C: These are assumed to be same

as those for the matrix regions B and C.

Od22B = Om22B

Od33B = O'm33B (16)
Od22C = Om22C

Od33C = Om33C

This completes the summary of equations for microstresses due to temperature differential



Stresses due to mechanical loads

The mechanical loads applied globally are progressively decomposed using

macromechanics/larninate theory to ply stresses and these stresses are passed on to the

microstresses calculation module. It should be noted that, eventhough they are treated as

mechanical loads, contributions arising due to thermal loads are included in the ply stresses.

The ply stresses are assumed to have been applied to the unit cell. The constituent

microstress contribution corresponding to each of the these ply stresses in each of the

regions A, B and C are calculated using the mechanics of materials approach.

Fiber Microstresses due to applied ply normal stresses

Stresses along the longitudinal (11) direction: The fiber longitudinal (11) stresses due to the

three normal applied ply stresses are given by

(i) ot1_..2_

ont = E m Et n

) mOfl I = - (VI21-Vf21 O!22

--122

onl = - (Vl31-Vf31 0133

--133

(17)

,.(1) 1"2) O)
Ofl I = Ofl I + Ofl I + On1

Note that in the above the superscripts (1), (2), and (a) represents the contributions to a

specific microstress due to the applied ply stress in 11, 22 and 33 directions respectively.

Stresses along the transverse (22) direction: The fiber transverse (22) microstress due to the

three normal applied ply stresses are given by

c2) °m (18)

vu2-(l-v/i_) v,.,zc-V/i_ I- V_zc Do n Fq,, _
(19)

oo.2°) = _ vt3 _(1__)vma2c__ ({1--_} vda2c + _0vm) ] °B3_ E.z2c

In the above the E22 c is given by

(20)

9



1

v] ,21,
o m = o_ + og+ o_ (22)

Stresses along the transverse (33) direction: These are analogous to the 2-2 direction stresses

and are given by

o) °.3 (23)
o_ =E_

(24)

Iv ({1-_1 D vm/] °m(2) = - _(l_v_)vm__ _ _ _ v_ + F._
(25)

In the above the Exac is given by

F-.33c--

_-._D_D[ + A D 1 (26)

+ B_t D0J E_ J

0) (2) O)
0/,33 = 0133 + Of 33 + 0t33

(27)

Matrix microstrcsses due tO applied ply normal stresses

Stresses along the longitudinal (11) direction in region A: The matrix longitudinal stresses

due to the three normal applied ply stresses are given by

(i) . = E °nt
Oral I^ ml IA EIII

O=aIA = (vm-vm) °m(l__)

o,omnA = (vm-vm) ot33(l_kf)

(28)
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Stressesalong the longitudinal (11) direction in regionsB and C: These are given by similar

expressions as above. However, the Poisson's contributions (the second and the third of the

above equations 28) are taken as same as above.

(1) _ = E °"1

OmllB mlIBEu 1

E °m
(I) _ ml IC'_u I

OmllC =

(29)

The total matrix microstress is given by adding each contribution.

_(I) + (2) + (3)
OmllA = UmlIA OmllA OmllA

_(t) + (2) O)
OmllB = OmllB OmllB + OmllB

_0) (2) O)
OmllC = UmlIC + OmllC + OmllC

(30)

Stresses along the transverse (22) direction in regions A, B, and C: The transverse

microstresses in the matrix region B and C are calculated first and the region A microstress

is obtained by forcing equilibrium in 22 direction. The microstresses in region B due to the

three normal applied ply stresses are given by

<2) E22s

Om22B = 0122" _

°nxEz_Iv -v tl-t/_)-./_v 1
vm22n"(t)= _ 1..2 mlT.13,_ V"f V"f dI2]BJ

(3) °ta3E22a/v -v :l-o/_)-./]_v "!. (31)
Om22B = - Et33 1_ 132 m32B _, V _, V-f d32aJ

Ed22a

+

By adding the above three contributions the total microstress in region B is obtained as

,,o) t2) O) (32)
Om2_3 = _m22B + O_2B + Om22B

The region C stresses in matrix, similarly, can be expressed by the following set of equations

11



Om22C = O122,

o)..,,.= °._E_clv-v (I
°._ _. |.,,,,,c

o.=c

[ DoJ Do )

-V/_)-V/_ (va._c _1 -D], "Dvm/}
t DoJ Do )

where Ezz c is given by equation (21).

By adding the above three contributions the total microstress in region B is obtained as

(33)

0) + (2) O)
0m22C = Om¢._ 0m22C + 0m22C

(34)

The Region A stresses are given by

(2) E_

Om22A = O122 E122

{1 D} (1) D_(I) ]o, -Do Do_2c]Om22A ffi - _ Om22B +

o) [_1Dl:) v :, l

_(D + (2) (3)
Om22A : Om22A Om22A + Om22A

(3s)

Stresses along the 33 direction in Regions A, B, and C: The microstresses in 3-3 direction

are given by analogous expressions as those for the 2-2 directions and may be obtained by

appropriately changing the subscripts 22 to 33. For the sake of completeness they are given

below:

12



(2) F_3B

Om33B = 0D3"_133

Om_3Bfv V 'l-J'_)-./i_v I.
Olld3B

(2) °E_'s {vm-vm23s(l-V/_)-V/_v }Om33B - d23B

Ed3_
E53B =

(36)

By adding the above three contn'butions the total microstress in region B is obtained as

_(t) + (2) + O)
Om33B = "m33B Om33B Om33B

(37)

The region C stresses in matrix, similarly, can be expressed by the following set of equations

=o _3c
(2) t33"_"

Om33C

{v (v _[I-D _+ :Dvns_ } (38,"T(I)I_33C= °lllE3_2ElI: .3-V,.:SC(I--v/_)-V/_d'3C{ Do j Do )

°t22E33clvn3-vm23s(l-_'-: (vd23c{X-_[D]+Dv_ f23)}]
(2)

Om33C =

where E33c is given by equation (26).

By adding the above three contributions the total microstress in region B is obtained as
0)_ + (2) + O) (39)

Om33C = Om33C Om33C Om33C

The Region A stresses are given by

13



Oma3A = O13 3'

o,1, o,,1
°, DloO, D:, 1

_(I) (2) ÷ O)
Om33A = um33A + Om33A Om33A

(40)

Interphase microstresses due to applied ply normal stresses

Stresses along the longitudinal (11) direction in Region B:

stresses due to the three normal applied ply stresses in the Region B are given by

o(I) = E °m

dllB dllB EIII

°'OdllB = - (VBI-Vd31 O133

= (i) (2) O)
OdllB OdllB + OdllB + OdllB

The interphase longitudinal

(41)

Stresses along the longitudinal (11) direction in Region C: These are obtained by changing

the subscript B to C in the above equations. Accordingly, these are given by

(1) = E °tu

OdllC dllCElll

. - EdllC

(2) _ (vm_vd2_d.._m om
OdllC =

. . EdllC

O) _ (vm_vd31C)____m om
OdllC =

O) (2) O)
OdllC = OdllC + OdllC + OdllC

(42)

Stresses along the transverse (22 and 33) direction in Regions B and C: These are same as

the matrix microstresses in the regions B and C.

14



Od22B = Om22B

a't22c = am22c (43)

Od33B = O_33 B

Od33C = Om33C

The above completes the discussion on constituent microstresses in various Regions A, B,

and C. It should be noted that the mirerostresses due to temperature differential must be

added to those due to mechanical loads to obtain the combined microstresses due to

thermo-mechanical loading.

Apart from these microstresses which are basically the stresses due to normal loads, there

exist the shear stresses due to the applied shear force resultants. These are also obtained

in a similar fashion and are given in the following paragraphs.

Fiber microstresses due to applied ply shear stresses

The fiber microstresses due to the three applied ply shear stresses are given by

Of 12

O112_112

Off2 =

(1.-¢_{1-(1-_00)_-(_00)_})

Gn3

Otl3 Gtt3

Ofl 3 =
D O,,,Is D Omt3

1. -_{1

G_
Ol_

Gm

D Om23 D G_o.3

(44)

Matrix microstresses due to applied ply shear stresses

Region A: The matrix microstresses due to the three applied ply shear stresses are given

by

_1_22x Gml3^ . Gm23XOml2A = 0[12-- ; Oml3A = OII3--_H 3 _ Om23A = O123 G123

(45)

15



The microstresses in region B due to the three applied ply shear stresses areRegion B:

calculated by

Gml2B

Gm

0"I_ = on2 1__1__ /

Gmlas

Ous
Oml3B = O113

Gm
O_ = O12 3'

(46)

Region C: The region C stresses are calculated by

Gml2C

= 0112" r

1- D _,-ls_ D

°mac= am[ _ D G=a3 D Gnu.3)]1- 1-(1-_oo)-_-----_mDo

(47)

Interphase microstresses due to applied ply shear stresses

Region B: The region B interphase stresses are calculated from

16



GdI2B

GII2

Odl2B = O112

1 \ o,._)

_dl3B

Gns
Odl3B = 0113.

1-41- 
GO.3B

Gm

(48)

Region C: The region C stresses are given by

Odl2C

Gdl2C

Gn2

=%2[ ( ___D.D) O,.,...._._2=__D.D__1-_I_ I-(I Do Gd12 Do ofl2) ]

Gdl3C

Gn3

Ore)]

Od23C

Od23C

G123

(1 D0

(49)

This completes the equations for microstresses due to applied ply shear stresses. Overall,

there are six fiber microstresses (three normal and three shear), 18 matrix microstresses

(nine normal and nine shear), and 12 interphase microstresses (six normal and six shear)

that result due to the six ply stresses (three normal and three shear). The ply stresses are

calculated in the subroutine COMSA using classical lamination theory for each incremental

17



load step. These are then passed to the microstress module comprised of the subroutines
STRESI, STRESF, STRESM and STRESD for the computation of the incremental

microstresses which are cumulatively added to obtain the total microstress in each

constituent and in each region. These microstresses are input to the MFIR module for

calculating the stress dependence of the constituent material behavior. Also, at the end of

each computation, these microstresses are compared with the respective allowable strengths

(e. g. On1 is compared with SmT,C ) to check for any failures in the constituents. If a

particular constituent shows stress failure, its respective stiffness is equated to a negligible

value (e.g. E m = 0.01 psi) in order redistribute the load and change its path.

Micromechanics

Composite micromechanics theory refers to the collection of physical principles,

mathematical models, assumptions and approximations employed to relate the behavior of

a simple composite unit (e.g., lamina or ply) to the behavior of its individual constituents.

The primary objective of composite micromechanics is to determine the equivalent

mechanical, and thermal properties of a composite ply in terms of the properties of the

constituent materials. The mechanical properties refer to normal moduli, shear moduli, and

Poisson's ratios. The thermal properties include the thermal conductivities, heat capacity and

the coefficients of thermal expansion. The derivation of equivalent composite ply properties

using micromechanics theory starts with the identification of a representative volume

element or unit cell as shown in Figure 5. It is the smallest region or piece of material over

which the stresses and strains are macroscopically uniform. However, within the unit cell the

stresses and strains are nonuniform due to the heterogeneity of the material. The unit cell

can consist of a fiber, matrix and/or an interphase. It is assumed that these cells are arranged

in a regular square array pattern. Equivalent properties for the ply are then derived in terms

of the constituent material properties based on the mechanics of materials approach. Other

assumptions involved in this approach are: 1) fiber and matrix are subjected to the same

strain in the fiber direction of a unidirectional fibrous composite, and 2) the same transverse

stress is applied to both the fiber and matrix in the direction transverse to the fiber.

Physical Properties

The mass density of the ply is assumed to be given by the rule of mixtures type equation as
shown below:

pl = kfpf + kmp,,, + (Z-kf-km)pd (50)

The above is calclulated in the subroutine PLYMAT.

Mechanical Properties

The micromechanics equations which facilitate the computation of ply equivalent properties

are programmed in the subroutine MECHPL in METCAN. The actual details of derivations
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for the ply longitudinal and transverse moduli are given in the Appendix. The derivation of

the remaining properties follow along the same lines as described in the Appendix. The

following is a brief list of the various equations:

Ply Normal Moduli: The longitudinal modulus _n of the ply is calculated based on the

assumption that the compatibility of longitudinal displacement requires equal strains for the

composite and constituents [1]:

Era= k_E,,,n + _ E,,,(1_/D12) + En z (50)

[DoJ

The transverse normal moduli F_,m and E_3 are derived by first computing the equivalent

moduli in each of the regions A, B and C and then combining them by assuming that the

subregions act as parallel elements when subjected to a transverse load. To compute the

equivalent moduli of each subregion it is assumed that the stress due to transverse load is

same in each of the constituents. This leads to the following expressions for the transverse

moduli:

El2 2 = Era2 2

)

-_(1-_--_

D E_ D Em_
(51)

El3 3 = Era3..
D E,.a3 D Ema3

1 -(1 -_) ....

(52)

Ply Shear Moduli:

The derivation for the shear moduli in 1-2 and 1-3 directions follow along the same lines as

that of the transverse modulus. The shear modulus in 1-2 direction is given by

G|I 2 = t3,,,1: 1-1/1_+

v (i- 00 )

1 -¢_(1 G'''2 /

4-

1-_ 1-(1- )Odi2-Do On2)J

The shear modulus in 1-3 direction is given by

(53)
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Ous = GIn1_ !-_*
D Omis D Orals

'1 ''" %,J

(54)

The shear modulus in 2-3 direction is calculated by utilizing the transverse isotropy in the

2-3 direction:

Em (SS)
Ore- 2(1 * vm)

Alternatively, shear modulus in the 2-3 direction can also be derived independently using the

same criteria as that of transverse modulus derivation. It is given by

GI23 =

Gm23

+ (1 0t (s6)

D . 1__o .._._ Do G"m'_+:;_ 1_v_ _ o=2,+D

Note that currently in METCAN this equation is not used.

Poisson's Ratios: The derivation for the major Poisson's ratio in 1-2 and 1-3 direction follow

the derivation for the longitudinal modulus where in the fiber and matrix elements are

assumed to be acting in parallel. The respective equations are

[OoJ
(57)

vu3 = kmv.,,13+ kf (I- ) v,u3 * vm
(58)

Poisson's Ratio in 2-3 direction: The Poisson's ratio in 2-3 direction is derived by using a
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combination of series and parallel elements of the various subregions A, B and C. The

equation is given by

)Vm2 3 ÷"

1- Do,

1- D) D 1
÷ ÷

(S9)

Thermal Properties:

The properties under this category are the three thermal expansion coefficients, the three

thermal conductivities and the heat capacity. These are computed in the subroutine

THERMPL in METCAN.

Longitudinal thermal expansion coefficient: This is derived based on the observation that

free expansion in 1-1 direction produces no resultant load in that direction. This implies that

the integrated effect over the cross section of the sum of the individual stresses developed

in each constituent due to the mismatch of the thermal expansion coefficients must add up

to zero identically. This leads to the following expression for the longitudinal thermal

expansion coefficient:

E,. kf/1 (D_ 2] E d [D_ 2 Ef
(60)

Transverse thermal expansion coefficients: The derivation for the transverse thermal

expansion coefficients is carried in two stages analogous to the derivation of the transverse

moduli. First, equivalent thermal expansion coefficients are written for each subregion A,

B, and C. During this stage the individual constituents are assumed to act in series. The

overall equivalent thermal expansion for the unit cell is then written by assuming the

individual regions to act in parallel. The following are the equations for the two transverse

thermal expansion coefficients:
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1- _I_D_)_,, D
Do)E _ DoE-_m

(61)

1- -1-NF d DoE_I

(62)

Longitudinal heat conductivity: The longitudinal heat conductivity of the ply is derived by

assuming that the three constituents are in parallel which yields the following rule of

mixtures type expression:

Kit i
+ 1 D2 + D2 (63)

Transverse heat conductivities: To derive the transverse conductivities the approach adopted

for the derivation of the transverse moduli is followed. The equivalent heat conductivity for

each subregion A, B and C is first expressed assuming that the constituents are acting in

series followed by the expression of the ply conductivity assuming that each subregion is

acting in parallel. This yields the following expressions for the transverse conductivities:
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Km = K_
Do

+

_Naa) (1-(1 D._ D K_

(#4)

KB3 = Kin3 _

_(1---_-D )
Do

K_3 J

(65)

Heat capacity: The equivalent ply heat capacity is obtained by the simple rule of mixtures

type equation.

q: -LEo) "+ Eoo)7, '
(6f)

where Pl is the equivalent ply density.

Maeromechanics

Macromechanics is the study of composite behavior wherein the material is presumed

homogeneous and the effects of the constituent materials are detected only as averaged

apparent properties of the composite. Thus, a collection of procedures which allows to

proceed from the lamina or ply level properties to the global or laminate level properties

where the heterogeneities associated with fiber, matrix and interphase are completely

smeared out constitutes the theory of macromechanics. These procedures utilize the

classical laminate theory to integrate the ply level properties and obtain the laminate level

properties. These procedures are well known and are explained thoroughly in many text

books. Therefore they are not repeated here. References [4-5] may be consulted for the

theoretical details. Also, Reference [6] may be consulted for how these procedures are

incorporated in METCAN, as many of these subroutines are taken from the earlier

computer code ICAN which was primarily developed for polymer matrix composites. The

principal subroutines that perform the macromechanical integration in METCAN are

GACD3, GPCFD2 and COMSA. These are essentially the same subroutines that are used

in ICAN [6,7].
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Incremental Iterative Solution Scheme

The nonlinear thermo-mechanical response of high temperature metal matrix composites is

obtained using an incremental iterative solution scheme as shown in the flow chart in Figure

6. During each load increment a linear laminate analysis is performed. At the end of each

such analysis the response is saved and compared with that of the previous step till

convergence to a prescribed tolerance level is achieved. The properties of the constituents

are varied in each iteration based upon the current response and temperature using the

multi-factor-interaction-relationship. A different flow chart is shown in figure 7 which

indicates the principal subroutines of the program that are active in each of the blocks

shown in figure 6. Note that in this flow chart the modules performing output operations

are intentionally removed to avoid clutter. Only the basic operations pertaining to nonlinear

material model, micromechanics and macromechanics are indicated. This chart should be

consulted along with figure 2 by those wishing to debug/update/modify the code.

Convergence Criteria

The convergence criteria used in METCAN is based on the global/laminate level strains.

During each incremental load step analysis, the global incremental strains are preserved and

are compared between successive iterations. If the differences are with in five percent

convergence is assumed to have been achieved. The tolerance level is hard wired in the

code. However, it can be easily altered. Also, alternative convergence criteria based on ply

level strains/stresses/properties can be set with out much difficulty.

Concluding Remarks

The computer code METCAN is developed for simulating the nonlinear behavior of high

temperature metal matrix composites. The code documentation consists of a set of three

manuals. They deal with the code usage, demonstration of the code capabilities and the

theoretical aspects pertaining to the high temperature metal matrix micromechanics. The

present manual provides a summary of all the theoretical details embedded in the computer

code METCAN. The emphasis, however, is placed specifically on the micromechanics,

microstresses and the nonlinear material behavior models that are incorporated in

METCAN. The primary intention is to provide information to the code user who might

want to modify, update, and debug the code. Assumptions leading to the derivation of

various equations are briefly mentioned with no details on the actual procedure. The details

of the derivation is beyond the scope of the present manual. The actual usage of the

computer code is discussed in the companion volume "METCAN User's Manual. The

various features of the code and how they can be utilized are discussed in the companion

volume "METCAN Demonstration Manual". For a complete understanding of the code and

its capabilities the user is advised to refer to all the three volumes.

24



Appendix

In order to demonstrate the formal procedure involved in the application of composite

micromechanics theory, derivations of the equations for ply normal moduli (_n and F_,m)

are explicitly developed below. The particular approach taken here relies on the principles

of force equilibrium and displacement compatibility as defined from elementary mechanics

of materials approach.

Longitudinal Modulus

Consider a square array unit cell model (see Fig. 5) subjected to a uniaxial load in the

longitudinal direction. The equivalent composite (ply) load is defined from force equilibrium
to be the sum of the constituent loads as follows:

Pf=P,+P,+P. (,)

In the integrated average sense, Eq. (1) is rewritten as

°,%--o_ + o,A,+ o.% (2)

where A represents cross sectional area. Division of the above equation by A t followed by

the substitution of the respective ratios of the areas with the volume fractions of the

constituents the following can be written:

at = otl_ / + oak a + omk m (3)

where _' is the actual fiber volume fraction based on the current fiber diameter D.

Since the compatibility of longitudinal displacement requires equal strains for the composite

and constituents (e 1 = c_ = e a = e., ), Eq. (3) can be differentiated with respect to strain

to give

F ook
d, ) =_d, )" +i,--_-F'+tde )-

(4)

The quantities (do/de) represent the slopes of the corresponding stress strain curves for the

composite and constituents and in this context define instantaneous of "tangent" moduli.

Hence, Eq. (4) becomes

The volume fractions can be expressed in terms of the inner and outer diameters of the fiber

D and D O and the apparent fiber volume ratio kt.. Note that the apparent fiber volume

ration is based on the original/outer diameter of the fiber D O .
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/Vl
= 1___ D2k,'{

(0

With the aid of equations (5) and (6) the following expression can be developed for the ply

longitudinal modulus:

I ---_-D 2 +E,.k=
E m = E_ Doo + Edlq" Do

(7)

Transverse Normal Modulus in 2-2 direction

Consider the square array unit cell model again except that the fiber and interphase are of

equivalent square cross section such that linear dimensions can be defined as follows:

a t, = D;a d = -_-D o;a I = D O

and

(8)

sf = af ;sd = ad-af;st= at (9)

Assume a uniaxial load in the transverse direction and neglect Poisson"s effects. For the

subregion C displacement compatibilityyields

steI = s:f+ saled + s=e= (I0)

and the force equilibrium resultsin equal stressesfor the composite and constituents(at =

of = ed = am ). Hence, Eq. (I0) can be differentiatedwith respect to stressto give

(d¢,)_ (der_ (de,)= (de,,, L (11)

The quantities(de/do) represent reciprocalsof the slopes of the corresponding stress-strain

curves for the composite and constituents and in the same context as before define

reciprocalsof instantaneous or "tangent"moduli. The above equation can be rearranged to

yield the following:
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Etc = Em

,12,
With the aid of equations (7), (8) and (12) the equivalent modulus for the subregion C can

be shown to be given by

E_.

The equivalent modulus for subregion B can be deduced from Eq. (13)

equal to unity. The result is

Em

by letting D/D o

[1 ]
The equivalent modulus for subregion A is simply the matrix modulus or

The ply transverse modulus F_,m is defined by assuming that subregions A, B, and C act as

parallel elements when subjected to a transverse load. This is analogous to the case for Fax 1

where the constituents are assumed to act in parallel. Hence, from Eq. 5 it can be deduced
that

AE_ = E_Csf+ _Bs,_+ _ S,,, (16)

Division of the Eq. 16 by s I , followed by the substitution of the equations (7) and (8) and

the results from equations (13 - 16) leads to the following final expression for the transverse

ply modulus Em.

El2 2 = Era2 _

D

_(1 -'_o ° )

{1-V_(1-_'-_)}

D Era2 D Era2
(17)

Note that in the above the subscripts f, m and d are replaced by "f22", "m22" and "d22" to

indicate the direction of the loading.
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Table 1. METCAN units for constituent, ply and laminate properties

Property Symbol Unit

ELASTIC MODULUS E

SHEAR MODULUS G

POISSONS RATIO v
THERM. EXP. COEFF. a

DENSITY p
FIBER DIAMETER D

HEAT CAPACITY C

HEAT CONDUCTIVITY K

STRENGTH S

THICKNESS T
DISTANCE TO MIDPLANE Z

ANGLE TO AXES TH

TEMPERATURE T

STRAIN

STRESS o
MEMBRANE LOADS N

BENDING LOADS M

FIBER VOLUME RATIO kf

psi

psi
non-dim

in/in/F
1b/in**3

in

BTU/Ib/F

BTU-In/HR/in**2/F

psi
in

in

degrees
F

in/in

psi

Ib/in

ib-in/in
non-dim
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Figure 1 .--Integrated multi-scale approach to metal matrix composite analysis.
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(a) Single fiber.

/- Fiber F Matrix 3

(b) Ply material coordinate system.

Ply
orientation

angle,
deg

90 Iz

X

• "0"<

(c) Laminate structural coordinate system.

Figure 2.--Dmerent coordinate systems used in
METCAN.
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Rationale:

• Gradual effects during most range, rapidly degrading near final stages

• RepmsentaL_e of the In situ behavior for fiber, matrix, |nterphase, coating
• Introduction of primitive variables (PV')

• Con_stent in sttu representation of all constituent properties in terms of PV

• Room-temperature values for reference properties

• Continuous interptmse growth

• Simultaneous interaction of all pdmltive variables

• Adaptability to new matedaJs
• Amenable to verification inclusive of all properties

• Readily adaptable to incremental computational simulation

Notations:

P - property;, T - temperature; S - strength; R- metallurgical reaction; N - number of cycles:

t -time; over dot - rate; subscripts: O - reference; F -final; M - mechanical; T-thermal

Figure 3.--Assumed multifactor interaction relationship to represent the various factors which influence in

situ constituent materials behavior.
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Figure 4.--Explanation of the multifactor interaction relationship.
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F'_ure 5.---METCAN unit cell showing _e different regions A, B,

and C of heterogenity and the idealization for the derivation of

the micromec_anical equations.
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Figure 6._ETCAN flow chart.
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